3.95 \(\int \csc (e+f x) \sqrt{a+b \tan ^2(e+f x)} \, dx\)

Optimal. Leaf size=84 \[ \frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)-b}}\right )}{f}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)-b}}\right )}{f} \]

[Out]

-((Sqrt[a]*ArcTanh[(Sqrt[a]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/f) + (Sqrt[b]*ArcTanh[(Sqrt[b]*Sec[
e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/f

________________________________________________________________________________________

Rubi [A]  time = 0.0873346, antiderivative size = 84, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3664, 402, 217, 206, 377, 207} \[ \frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)-b}}\right )}{f}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \sec (e+f x)}{\sqrt{a+b \sec ^2(e+f x)-b}}\right )}{f} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-((Sqrt[a]*ArcTanh[(Sqrt[a]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/f) + (Sqrt[b]*ArcTanh[(Sqrt[b]*Sec[
e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/f

Rule 3664

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sec[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[((-1 + ff^2*x^2)^((m - 1)/2)*(a - b + b*ff^2*x^2)^p)/x^(
m + 1), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rule 402

Int[((a_) + (b_.)*(x_)^2)^(p_.)/((c_) + (d_.)*(x_)^2), x_Symbol] :> Dist[b/d, Int[(a + b*x^2)^(p - 1), x], x]
- Dist[(b*c - a*d)/d, Int[(a + b*x^2)^(p - 1)/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d,
0] && GtQ[p, 0] && (EqQ[p, 1/2] || EqQ[Denominator[p], 4])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \csc (e+f x) \sqrt{a+b \tan ^2(e+f x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a-b+b x^2}}{-1+x^2} \, dx,x,\sec (e+f x)\right )}{f}\\ &=\frac{a \operatorname{Subst}\left (\int \frac{1}{\left (-1+x^2\right ) \sqrt{a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{f}+\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{f}\\ &=\frac{a \operatorname{Subst}\left (\int \frac{1}{-1+a x^2} \, dx,x,\frac{\sec (e+f x)}{\sqrt{a-b+b \sec ^2(e+f x)}}\right )}{f}+\frac{b \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\sec (e+f x)}{\sqrt{a-b+b \sec ^2(e+f x)}}\right )}{f}\\ &=-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \sec (e+f x)}{\sqrt{a-b+b \sec ^2(e+f x)}}\right )}{f}+\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sec (e+f x)}{\sqrt{a-b+b \sec ^2(e+f x)}}\right )}{f}\\ \end{align*}

Mathematica [B]  time = 7.38287, size = 295, normalized size = 3.51 \[ \frac{\cos (e+f x) \sec ^2\left (\frac{1}{2} (e+f x)\right ) \sqrt{\sec ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)} \left (2 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \left (\tan ^2\left (\frac{1}{2} (e+f x)\right )+1\right )}{\sqrt{a \left (\tan ^2\left (\frac{1}{2} (e+f x)\right )-1\right )^2+4 b \tan ^2\left (\frac{1}{2} (e+f x)\right )}}\right )-\sqrt{a} \left (\tanh ^{-1}\left (\frac{a-(a-2 b) \tan ^2\left (\frac{1}{2} (e+f x)\right )}{\sqrt{a} \sqrt{a \left (\tan ^2\left (\frac{1}{2} (e+f x)\right )-1\right )^2+4 b \tan ^2\left (\frac{1}{2} (e+f x)\right )}}\right )+\tanh ^{-1}\left (\frac{a \left (\tan ^2\left (\frac{1}{2} (e+f x)\right )-1\right )+2 b}{\sqrt{a} \sqrt{a \left (\tan ^2\left (\frac{1}{2} (e+f x)\right )-1\right )^2+4 b \tan ^2\left (\frac{1}{2} (e+f x)\right )}}\right )\right )\right )}{2 f \sqrt{\sec ^4\left (\frac{1}{2} (e+f x)\right ) ((a-b) \cos (2 (e+f x))+a+b)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

((2*Sqrt[b]*ArcTanh[(Sqrt[b]*(1 + Tan[(e + f*x)/2]^2))/Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^
2)^2]] - Sqrt[a]*(ArcTanh[(a - (a - 2*b)*Tan[(e + f*x)/2]^2)/(Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Ta
n[(e + f*x)/2]^2)^2])] + ArcTanh[(2*b + a*(-1 + Tan[(e + f*x)/2]^2))/(Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*
(-1 + Tan[(e + f*x)/2]^2)^2])]))*Cos[e + f*x]*Sec[(e + f*x)/2]^2*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[e
 + f*x]^2])/(2*f*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[(e + f*x)/2]^4])

________________________________________________________________________________________

Maple [B]  time = 0.251, size = 719, normalized size = 8.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x)

[Out]

1/4/f/a^(1/2)/b^(1/2)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/cos(f*x+e)^2)^(1/2)*4^(1/2)*cos(f*x+e)*(cos(f*x+e)-1)
*(2*b^(3/2)*ln(-4/a^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2
)*a^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(
f*x+e)^2)-2*arctanh(1/8*b^(1/2)*4^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*4^(1/2)-2*cos(f*x+e)-4^(1/2)-2)/sin(f*x+e)^
2/((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2))*a^(1/2)*b-2*ln(-2/a^(1/2)*(cos(f*x+e)-1)*(cos(f*
x+e)*((a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+
e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2)*b^(3/2)+a*ln(-4*(cos(f*x+e)*((a*cos(f*
x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+cos(f*x+e)*a-b*cos(f*x+e)+((a*cos(f*x+e)^2-cos(f*x+e)
^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/(cos(f*x+e)-1))*b^(1/2)+ln(-2/a^(1/2)*(cos(f*x+e)-1)*(cos(f*x+e)*((
a*cos(f*x+e)^2-cos(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)-cos(f*x+e)*a+b*cos(f*x+e)+((a*cos(f*x+e)^2-co
s(f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)*a^(1/2)+b)/sin(f*x+e)^2)*a*b^(1/2))/sin(f*x+e)^2/((a*cos(f*x+e)^2-cos(
f*x+e)^2*b+b)/(cos(f*x+e)+1)^2)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \tan \left (f x + e\right )^{2} + a} \csc \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(f*x + e)^2 + a)*csc(f*x + e), x)

________________________________________________________________________________________

Fricas [A]  time = 2.86341, size = 1319, normalized size = 15.7 \begin{align*} \left [\frac{\sqrt{a} \log \left (-\frac{2 \,{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} - 2 \, \sqrt{a} \sqrt{\frac{{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right ) + \sqrt{b} \log \left (-\frac{{\left (a - b\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt{b} \sqrt{\frac{{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + 2 \, b}{\cos \left (f x + e\right )^{2}}\right )}{2 \, f}, -\frac{2 \, \sqrt{-b} \arctan \left (\frac{\sqrt{-b} \sqrt{\frac{{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{b}\right ) - \sqrt{a} \log \left (-\frac{2 \,{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} - 2 \, \sqrt{a} \sqrt{\frac{{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right )}{2 \, f}, \frac{2 \, \sqrt{-a} \arctan \left (\frac{\sqrt{-a} \sqrt{\frac{{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a}\right ) + \sqrt{b} \log \left (-\frac{{\left (a - b\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt{b} \sqrt{\frac{{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + 2 \, b}{\cos \left (f x + e\right )^{2}}\right )}{2 \, f}, \frac{\sqrt{-a} \arctan \left (\frac{\sqrt{-a} \sqrt{\frac{{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a}\right ) - \sqrt{-b} \arctan \left (\frac{\sqrt{-b} \sqrt{\frac{{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{b}\right )}{f}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*(sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 - 2*sqrt(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos
(f*x + e) + a + b)/(cos(f*x + e)^2 - 1)) + sqrt(b)*log(-((a - b)*cos(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b)*cos(
f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)^2))/f, -1/2*(2*sqrt(-b)*arctan(sqrt(-b)*sqrt(
((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b) - sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 - 2*sqrt
(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a + b)/(cos(f*x + e)^2 - 1)))/f, 1/2*(2*s
qrt(-a)*arctan(sqrt(-a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a) + sqrt(b)*log(-((a -
 b)*cos(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x +
 e)^2))/f, (sqrt(-a)*arctan(sqrt(-a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a) - sqrt(
-b)*arctan(sqrt(-b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b))/f]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \tan ^{2}{\left (e + f x \right )}} \csc{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(a+b*tan(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*tan(e + f*x)**2)*csc(e + f*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \tan \left (f x + e\right )^{2} + a} \csc \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*tan(f*x + e)^2 + a)*csc(f*x + e), x)